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Abstract
The physics of solid tumor growth can be considered at three distinct size scales: the tumor
scale, the cell–extracellular matrix (ECM) scale and the sub-cellular scale. In this paper we
consider the tumor scale in the interest of eventually developing a system-level understanding
of the progression of cancer. At this scale, cell populations and chemical species are best treated
as concentration fields that vary with time and space. The cells have chemo-mechanical
interactions with each other and with the ECM, consume glucose and oxygen that are
transported through the tumor, and create chemical by-products. We present a continuum
mathematical model for the biochemical dynamics and mechanics that govern tumor growth.
The biochemical dynamics and mechanics also engender free energy changes that serve as
universal measures for comparison of these processes. Within our mathematical framework we
therefore consider the free energy inequality, which arises from the first and second laws of
thermodynamics. With the model we compute preliminary estimates of the free energy rates of
a growing tumor in its pre-vascular stage by using currently available data from single cells and
multicellular tumor spheroids.

S Online supplementary data available from stacks.iop.org/JPhysCM/22/194122/mmedia

(Some figures in this article are in colour only in the electronic version)

1. Background

The progression of a tumor involves (a) cell proliferation,
(b) cell motility, (c) metabolism by which the cells consume
glucose and oxygen and create by-products, (d) mechanical
interactions between cancer cells, the ECM and surrounding
tissues and (e) mass transport of chemical species to and
through the tumor. Each of these processes has a physically
distinct contribution to the free energy rate in the developing
tumor. Complex biophysical interactions between these
processes are more broadly observable at the tumor scale than
in single-cell studies. Additionally, as we demonstrate in this
paper, tumor scale studies have the potential of identifying
the relevant questions regarding energy rates that must be
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considered at the lower, cell–ECM and sub-cellular scales.
Using the tumor scale studies, it is of interest to track the free
energy rates and thereby gain a system-level understanding of
the processes listed above in developing tumors. More broadly,
we argue in section 5 of this paper that there is an interest in
combining free energy studies at the tumor, cell–ECM and sub-
cellular scales. This will reveal how the energetics change with
time and state of the tumor between these different scales and
between the processes underlying tumor growth to affect the
progression of the cancer.

1.1. Biochemical dynamics and mechanics of tumors; a role
for free energy

The progression of cancer can be framed in terms of pathways
of energy consumption. This idea has been applied at the
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molecular scale to the identification of specific metabolites in
the cancer cells, which implicates certain pathways of cellular
metabolism (Denkert et al 2008). Whether these pathways are
normal or altered, the cell directs the associated free energy
rates to some of its functions: proliferation, motility and
mechanical interactions. Conversely, the cell’s chemical stores
of energy (in the form of ATP) are replenished by glucose
metabolism in the presence of oxygen—a process involving
mass transport over the extent of the tumor and reactions
within its cells. The physics of solid tumors at the cell–ECM
scale thus comprises a broad range of cellular functions that
are not apparent at the sub-cellular (e.g. organelle) scale.
Additionally, the progression of cancers that produce solid
tumors is not determined solely by the biochemo-mechanics
within single cells or the interactions of a few cells with each
other and with the ECM. While these local effects are very
important, they depend also on spatio-temporal conditions and
cooperative effects that are particularly apparent at the tumor
scale. This is one reason for the interest in tumor scale
studies of the physics of cancer (Heiden et al 2009, Kumar
and Weaver 2009, Levental et al 2009, Paszek et al 2005,
Gatenby and Gillies 2004, Gordon et al 2003, Guiot et al 2003,
Koike et al 2002, Bell et al 2001, Freyer 1998, Helmlinger
et al 1997, Weaver et al 1997, Casciari et al 1992, Bourrat-
Floecke et al 1991). At this scale, cells are represented by
concentration fields. The concentrations increase and decrease
(due to cell proliferation and death, respectively), the cells
undergo transport (cell motility), they deposit and degrade
the ECM and develop mechanical stress (from cell–cell and
cell–ECM mechanical interactions). The cells also consume
glucose and oxygen as well as create by-products, all of which
are also represented as concentrations at the tumor scale.

There are two main features of tumor scale physics that
have been studied for their influence on the progression of
the cancer: (a) the biochemical dynamics, by which we mean
the changing concentration fields of cells, ECM, oxygen,
glucose and by-products, which result from the processes
of cell proliferation and death, cell motility and metabolism
(Heiden et al 2009, Gatenby and Gillies 2004, Bell et al 2001,
Freyer 1998, Groebbe and Mueller-Klieser 1996, Casciari
et al 1992, Freyer et al 1991, Bourrat-Floecke et al 1991,
Freyer and Sutherland 1986, 1985, Franko and Sutherland
1979, Weinhouse 1956, Warburg et al 1927). (b) The
mechanics of interactions among cancer cells and between
cells and the ECM. The forces involved in these mechanical
interactions have been implicated in cell proliferation, motility
and signaling (Kumar and Weaver 2009, Butcher et al 2009,
Chang et al 2008, Suresh 2007, Kaufman et al 2005, Padera
et al 2004, Gordon et al 2003, Koike et al 2002, Helmlinger
et al 1997). All physical processes at the sub-cellular and
cell–ECM scales manifest themselves in either the biochemical
dynamics (as defined above) or mechanics at the tumor scale,
and the operation of all these processes involves free energy
changes. Therefore, free energy change at the tumor scale is
a universal measure for quantification and comparison of the
physical processes that govern the cancer’s progression and
perhaps is the only measure that unifies the biochemistry and
mechanics of tumor growth.

As the above references suggest, the biochemical
dynamics and mechanics of tumors have mostly been studied
in isolation with a focus on the biochemical dynamics that has
only recently begun to yield some ground to studies of the
mechanics of tumors. There have been only a few studies—all
focused on mathematical modeling—where these two aspects
have been studied in combination (Cristini et al 2009, Frieboes
et al 2006, Zheng et al 2005, Drasdo and Höhme 2005, Jackson
and Byrne 2002). None, however, has considered the free
energy rates associated with the biochemical dynamics and
mechanics of tumors.

1.2. Studies of the biochemical dynamics of tumor growth

Experimental studies of the biochemical dynamics of cancer
have maintained a focus on cell proliferation rates under
varying concentrations of glucose, oxygen and H+ ions
(Gatenby and Gillies 2004, Freyer 1998, Groebbe and Mueller-
Klieser 1996, Casciari et al 1992, Freyer et al 1991, Groebbe
and Mueller-Klieser 1991, Tannock and Kopelyan 1986,
Mueller-Klieser et al 1986, Sutherland et al 1986, Freyer and
Sutherland 1985, 1986, Franko and Sutherland 1979, Warburg
et al 1927) and in some instances, of lactate (Bourrat-Floecke
et al 1991). While there have been a few in vivo studies among
them, the majority of these studies have used multicellular
tumor spheroids—an in vitro cancer model corresponding to
initial pre-vascular or inter-vascular microregions of in vivo
tumors. Tumor spheroids derived from chosen cancer cell
lines have been grown from sizes of ∼50 μm in growth
medium perfused with glucose and oxygen. After an initial
exponential growth phase (so-called because the cell count
increases exponentially in time), the size reaches a plateau
resulting in a characteristic sigmoidal shape of the size versus
time curve, which has been represented by an empirical fit
termed the Gompertzian equation (Gompertz 1825).

The sigmoidal shape of growth curves has been of interest
to theoretical biologists. On the basis of hydrodynamic scaling
laws and fractal branching of the terminal vasculature, West
et al (2001, 2002) proposed that the total metabolic rate of an
organism is proportional to the 3/4th power of its mass and
derived growth laws that can match the time progression of the
size of biological systems across many orders of magnitude.
Guiot et al (2003) demonstrated that these growth laws are able
to represent the sigmoidal growth curves of tumors. While it
is an elegant approach that is also energy based, this scaling
law applies to the tumor as a whole. It therefore does not shed
light on the detailed distribution of free energy rates between
the many tumor-scale processes that we have described in
section 1.1 and that govern the physics of cancer. Focusing
on these physical processes, however, it has been shown (see
the references at the beginning of the previous paragraph)
that the plateau in growth is reached because, as the tumor
spheroid grows, the biochemical dynamics become diffusion-
limited: glucose and oxygen do not diffuse rapidly enough
to the center to supply the cells as they continue to deplete
these chemicals by metabolic activity. The cells slip into a
quiescent state and eventually die, forming a necrotic core,
typically when the tumor spheroid has attained a diameter of
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∼500 μm. This is the end of the exponential growth phase.
The tumor spheroid’s size grows at a vanishingly small rate
as the net cell proliferation rate tends to zero. For spheroids
derived from different cell lines, but growing in the same
environment (in terms of availability of nutrients and stiffness
of surrounding media), this limiting size is determined by the
cell type (Folkman and Greenspan 1975). The next stage of
tumor progression in vivo is vascularization, which gives the
tumor a new lease on life as newly formed blood vessels begin
to supply glucose and oxygen to the cells.

1.3. The lately emerging mechanics of tumors

Evidence that mechanics also affects the tumor’s progression
has appeared more recently. Helmlinger et al (1997) found
a suppression of the growth of tumor spheroids derived from
colon cancer LS174T cells when subjected to compressive
stress by an encapsulating hydrogel. In a follow-up study
Koike et al (2002) demonstrated that externally applied
mechanical stress aids the formation of multicellular tumor
spheroids in the highly metastatic Dunning R3327 rat prostate
carcinoma AT3.1 cells, while the less metastatic AT1 cells
formed spheroids even without the applied stress.

Chang et al (2008) showed that in four different cell lines
shear stress led to cell cycle arrest in the G2/M phase. This
result was associated with increased expression of cyclins B1
and p21CIP1, and decreased expression of cyclins A, D1 and E,
cyclin-dependent kinases (cdk) −1,−2,−4,−6 and p27KIP1,
as well as decreased cdk-1 activity. Reviews by Kumar and
Weaver (2009), Butcher et al (2009) and Suresh (2007) have
pointed to the decreased stiffness and altered cytoskeletal
rheology of cancer cells from several different cell lines when
compared with normal cells. These phenotypes promote
greater motility and therefore probably favor metastasis of the
cancer.

Cells also impose traction forces on the ECM, and Gordon
et al (2003) found that larger traction forces near the edge of
tumor spheroids with the human U87MGmEGFR glioblastoma
cell line led to greater depths of invasion into the ECM. Many
cell types form focal adhesions with the ECM, and the force
developed in the actin cytoskeleton is regulated by a dynamic
interaction between focal adhesions, the cytoskeleton and the
ECM (Geiger and Bershadsky 2001 and references therein).
It is hypothesized that the force thus developed regulates
the expression and activity of many proteins by mechanisms
that are yet undiscovered and that this chemo-mechanical
regulation may influence the chemical signaling in cancer cells
(Kumar and Weaver 2009 and references therein). Butcher
et al (2009) have also pointed to altered ‘mechanoreciprocity’
(the development of force within the cell in response to
ECM-imposed strain) by which higher-than-normal forces are
applied to cell–cell junctions, causing them to lose their
integrity, thereby aiding in tissue invasion. Weaver et al
(1997) found that mechanical interactions between integrins
and the ECM altered the phenotype of human breast cancer
cells and that under certain interventions these cells reverted
to the normal phenotype. Padera et al (2004) demonstrated
that mechanical stress created by growing tumors compresses

blood vessels supplying the tumors and thereby interferes with
the delivery of both nutrients and drugs.

The physical processes that manifest themselves in the
biochemical dynamics and mechanics of tumors are of interest
because they have all been found to influence the progression
of the cancer. Our aim is to study them in the context of the free
energy changes that are caused by these processes. Toward this
goal, section 2 provides an outline of our mathematical models
of these processes at the tumor scale and the theoretical basis
for considering the associated free energy rates. Section 3 is
a brief discussion of the experiments that we have initiated
to support the computational studies. Section 4 presents
computational studies that serve as preliminary estimates
of free energy rates in a growing, pre-vascular tumor. A
discussion and conclusions are presented in section 5.

2. The continuum model for the physics of growing
tumors

Our mathematical formulation for the physics of tumor growth
is drawn from a broader treatment that we have developed for
the growth and remodeling of biological tissue. It is based
on the continuum theory of mixtures and has been detailed in
Garikipati et al (2004, 2006) and Narayanan et al (2009).

2.1. The biochemical dynamics of tumor growth

The biochemical dynamics of the tumor are governed by
a system of coupled reaction–transport partial differential
equations (PDEs) for the concentrations of cells ρc, ECM ρe,
oxygen ρo and glucose ρg:

∂ρc

∂ t
= π c − ∇ · (−Dc∇ρc) (1)

∂ρe

∂ t
= π e (2)

∂ρo

∂ t
= πo − ∇ · (−Do∇ρo) (3)

∂ρg

∂ t
= πg − ∇ · (−Dg∇ρg). (4)

Here, Dα is the diffusivity of the corresponding species, where
α = c, o or g. The diffusive term in equation (1) models
the random motion of cells in the absence of a chemotactic
or haptotactic driving force6. In equation (2) the ECM
does not undergo transport, while in equations (3) and (4)
oxygen and glucose, respectively, undergo diffusive transport.
Source terms modeling the proliferation rate of cells, the ECM
production rate and the consumption rates of oxygen and
glucose are π c, π e,−πo and −πg, respectively.

6 Directed motion of the cells can arise under a chemotactic driving force
that causes them to migrate away from a toxic by-product, in the direction
of the vascular supply, or towards nutrients. Alternatively, haptotaxis may
influence them to migrate toward a more abundant ECM. These responses are,
however, not observed in the early, pre-vascular and pre-necrotic stages that
we are considering in this work. Mathematically speaking, chemotactic and
haptotactic cell motion would be modeled by convection terms in equation (1).
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The cell proliferation rate (expressed as a mass rate per
unit volume with units of mg cm−3 s−1) has been chosen to
model the initial, exponential stage of tumor growth:

π c = ρc
0

J

log 2

tD
2t/tD = ρc

0

J

1

τ
et/τ , (5)

where ρc
0 is the initial cell concentration, tD is the cell

doubling time, τ = tD/ log 2 and J is the ratio by which
an infinitesimally small volume of the tumor has deformed
and grown. This last factor has been made more precise in
the discussion of mechanics that follows in section 2.2. The
cell doubling time is dependent on the oxygen and glucose
concentrations (Casciari et al 1992), and the pH (ρH+

) of the
medium (Casciari et al 1992, Bourrat-Floecke et al 1991). We
have used the equation proposed by Casciari et al (1992) for tD
as a function of ρo, ρg and ρH+

:

tD = topt
D

0.014

(
ρo + 7.3 × 103

ρo

) (
ρg + 1.8 × 10−2

ρg

)

× (ρH+
)0.46, (6)

where topt
D is the optimal doubling time found to be attained

at ρo = 1.79 × 10−3 mg cm−3, ρg = 0.99 mg cm−3 and
ρH+ = 5.62 × 10−8 mg cm−3 (pH = 7.25). Equation (6)
was compared with data in Freyer and Sutherland (1985,
1986) in addition to those in Casciari et al (1992). A least-
squares fit returned a value of R2 = 0.75. While in Casciari
et al (1992) topt

D = 11 h, we have left this factor as a
parameter to match our preliminary tumor spheroid growth
experiments (see section 3.1). Note that, at fixed ρH+

, the time
required for doubling the number of cells becomes unbounded
as ρo, ρg → 0, implying that the cell proliferation rate
π c → 0. The vanishing oxygen and/or glucose concentration
provides a basis for modeling cell necrosis as we discuss later.
While Casciari et al (1992) used fixed values of ρo, ρg over
the tumor spheroid in their experiments, we have assumed
that equation (6) holds pointwise over the tumor spheroid.
Importantly, as ρo, ρg vary with time and space, the calculated
cell doubling time also varies. The optimal doubling time, topt

D ,
however, is fixed for a chosen cell line.

The ECM production rate has been modeled to be
proportional to the cell concentration:

π e = Aρc, (7)

with A being a constant of proportionality.
The oxygen and glucose consumption rates were also

adapted from Casciari et al (1992) to be consistent with
the different units used here and scaled by the local cell
concentration to be expressed as mass rates per unit volume.
The resulting rate functions take on field values that vary over
time and space, and have the forms

πo = −ρc

(
7.68 × 10−7 + 3.84 × 10−15

ρg(ρH+
)0.92

)

×
(

ρo

ρo + 1.47 × 10−4

)
, (8)

πg = −ρc

(
1.14 × 10−10 + 3.65 × 10−17

ρo

)

×
(

ρg

ρg + 7.21 × 10−3

)(
1

ρH+

)1.2

, (9)

with units of mg cm−3 s−1. The dependence of πo on ρo, and
of πg on ρg, is ‘Michaelis–Menten-like’, giving rates that vary
monotonically from zero to a maximum asymptotic value as
the respective concentrations increase from ρo, ρg = 0. Also
note that πo is inversely proportional to ρg and πg is inversely
proportional to ρo. These trends are reflected in the data of
Freyer and Sutherland (1985, 1986) and Casciari et al (1992).

2.2. Mechanics of the tumor

The PDEs for reaction–transport of cells and ECM are coupled
with the quasi-static balance of momentum that governs the
mechanics of the tumor. For the purpose of mechanics the
tumor is treated as a soft material consisting of cells and ECM.
The PDE for quasi-static balance of momentum is

∇ · σ = 0, (10)

where σ is the Cauchy stress, having a passive viscoelastic
contribution from the mechanical response of the ECM and
cells, and an active contribution due to cell traction. The total
stress is therefore written as σ = σel + σv + σa, the subscripts
denoting ‘elastic’, ‘viscous’ and ‘active’, respectively.

The deformation gradient tensor is F = I+∂u/∂X , where
I is the second-order identity tensor, u is the displacement
vector and X is the reference position. The ratio of current
(deformed and grown) to reference (undeformed and initial)
volume is J = detF . Since deformation results from both
elastic strain and growth, we can write F = Fel Fgr, where
Fgr is an isotropic tensor and represents the kinematic growth
caused by cell proliferation and ECM deposition. Accordingly
we write

Fgr = ((ρc + ρe)J/(ρc
0 + ρe

0))
1/3 I, (11)

where ρc
0 is the initial cell concentration and ρe

0 is the initial
ECM concentration. We also define the volume change ratio
due to elastic strain, Jel = detFel.

The elastic part of the stress is obtained from the standard
relation for a hyperelastic material σel = J −1

el Fel(∂W/∂C)FT
el ,

where W is the Mooney–Rivlin strain energy function and C
is the elastic right Cauchy–Green tensor at a given material
point. These quantities are related to the deformation of the
solid tumor as W = W (C), where C = FT

el Fel. Specifically,
the Mooney–Rivlin model is

W (C) = 1
2κ(Jel − 1)2 + 1

2μ( Ī1 − 3). (12)

Here κ and μ are, respectively, the bulk modulus and
shear modulus, the latter in the limit of infinitesimal strain, and
Ī1 is the first principal invariant of C̄ = J −2/3

el C defined as
Ī1 = trace(C̄). The viscous stress is written as

σv = (Jel)
−5/3 Fel QFT

el , (13)

where Q is a stress-like quantity that is governed by the
ordinary differential equation

Q̇ + Q

τ
= γ

τ
dev

[
2
∂W̄

∂C̄

]
, (14)
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Table 1. Parameters used in the continuum model.

Parameter Units Value Remarks

κ (tumor
spheroid)

Pa 100 000 Tumor bulk modulus estimated from tumor Young’s modulus
6 kPa (Suresh 2007) in the limit of infinitesimal strain for an
incompressible soft material

μ (tumor spheroid) Pa 2013 Obtained by matching tumor Young’s modulus 6 kPa (Suresh
2007) in the limit of infinitesimal strain for an incompressible
soft material

κ (gel) Pa 100 000 Gel bulk modulus to match tumor spheroid
μ (gel) Pa 2013 Gel shear modulus = tumor spheroid shear modulus in the

linear regime
β Pa(mg cm−3)−2 0.55 Scaled up from actomyosin-generated stress of 5.5 kPa on a focal

adhesion (Balaban et al 2001), and accounting for the ratio of ∼104

between cell and total focal adhesion area
Dc m2 s−1 10−16 An estimate for low motility cells displacing

∼3 μm over a day by random motion
A (mg cm−3)−1 s−1 8.27 × 10−8 Estimate for a cell producing 5% of its

mass in collagen over a week
Do m2 s−1 16.5 × 10−10 Jiang et al (2005)
Dg m2 s−1 4.22 × 10−11 Jiang et al (2005)
Bcell W 3 × 10−11 West et al (2002)
mcell kg 3 × 10−12 Common estimate for cells
ψ g J kg−1 4.22 × 105 Taken to be the free energy change of the glycolysis reaction that

converts one molecule of glucose to pyruvate and 2 ATP molecules
(Garrett and Grisham 2005)

with τ being an intrinsic relaxation time and W̄ = 1
2μ( Ī1 − 3).

For the tumor growth phenomena that will be studied with this
model, the strain rate is set by the rate of volume growth, which
happens over a timescale of 1–30 days. This rate therefore is
of the order of 10−7 s−1. In contrast, typical relaxation times
of soft tissue are in the range of 1000 s, giving a larger intrinsic
rate of 1/τ ∼ 10−3 s−1. The viscous effects are therefore
negligible, and the viscous stress, σv, has been set to zero in this
model. Similarly, we have also found that the intrinsic rates of
the gels that encapsulate tumor spheroids in our preliminary
experiments are large compared with the strain rates due to
growth, lending further support to the neglect of viscous effects
in tumor growth phenomena (see section 3.2).

The active stress arises due to the tensile traction imposed
by the cells on the ECM, σa = β(ρc/ρc

max)
2/3 I , which is

isotropic, as indicated by the second-order identity tensor, I ,
with β being a measure of the maximum traction developed.
The exponent of 2/3 converts the volume concentration ratio
to an area concentration ratio. According to this model an
isotropic stress β is developed at ρc = ρc

max. The value of
β has been determined from the stress of 5.5 kPa measured on
focal adhesions (Balaban et al 2001). This value was scaled up
geometrically by accounting for the typical numbers and sizes
of focal adhesions in cells to obtain our estimate for β . Table 1
lists additional parameters used in the model, with citations or
remarks on how the corresponding parameter was obtained.

2.3. Free energy rates in the growing tumor

Our mathematical model extends to the thermodynamics,
which encompasses effects arising from the biochemical
dynamics and mechanics of the tumor. The application of the
first and second laws of thermodynamics to our mathematical
model leads to an inequality that governs the free energy rates

of the growing tumor. The derivation has been detailed in
Garikipati et al (2004, 2006) for tissue undergoing growth and
remodeling:

ρcψ̇c
chem + π cψc + π eψe − σ :dgr + ρc∇ψc · vc

+ πgψg � 0. (15)

Here, ψα is the free energy per unit mass of the constituent
α(=c, e, o, g), ψc

chem is the chemical free energy of the cells7,
dgr = Fel Ḟgr F−1

gr F−1
el is the rate of deformation of the tensor

due to growth and ρcvc is the flux of motile cells given by
ρcvc = −Dc∇ρc. The mass-specific chemical free energy of
cells changes at a rate given by

ψ̇c
chem = −Bcellm

−1
cell + πgψg

ρc
(16)

where the Bcell is a constant metabolic power output for all
mammalian cells in culture as shown in West et al (2002) and
mcell is the mass of a single cell (see table 1 for values). The
second term in (16) is exactly the rate at which chemical energy
is extracted by consuming glucose. By adopting this form we
have assumed that the energy gained from glucose is stored in
the cells without losses.

The first term on the left-hand side of the free energy
inequality represents the rate at which chemical free energy
density is changing due to usage and storage within the
cells. The remaining terms are, respectively, the free energy
density rates due to cell proliferation, ECM production, tumor
growth against stress, cell motion and due to consumption of
glucose. The inequality requires that the sum of these rate
terms be negative, meaning that the total free energy density is
decreasing. Each of the terms in the free energy inequality can

7 For the physical processes considered here, the total free energy is the sum
of the chemical free energy and the mechanical strain energy.

5
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be computed from our model using experimentally determined
parameters that represent a specific tumor cell line, the
environment of the tumor cells (such as whether they form
a tumor spheroid surrounded by a gel, as in section 4), and
initial and boundary conditions. The evaluation of these terms
provides a quantitative comparison of the free energy rates that
occur in these distinct tumor scale processes. As mentioned
in section 1, we emphasize that the biochemical dynamics and
mechanics of the tumor are subjected to unified treatment in
this comparison of free energies.

It is also useful to rewrite (15) as

ρcψ̇c
chem + π cψc + π eψe � σ :dgr

− ρc∇ψc · vc − πgψg. (17)

If the mechanical power represented by the first term
on the right-hand side is positive in sign, the corresponding
free energy change is not stored and therefore represents
a mechanism of dissipation. If the change in free energy
represented by the rate −ρc∇ψc · vc is negative, it also
represents a dissipative mechanism. A positive value of
−πgψg represents the energy extracted by consuming glucose.
The left-hand side represents mechanisms of energy storage.
In this form, therefore, the inequality specifies that the rate of
free energy storage is less than the rate of energy loss due to
dissipation and glucose consumption.

2.4. Numerical implementation of the mathematical model

The five coupled PDEs (1)–(4) and (10) are solved by the
finite element method. Several mathematical complexities can
arise in the solution of this coupled system of PDEs, and we
have discussed their treatment at length in Narayanan et al
(2009). Briefly, the reaction–transport PDEs are integrated in
time by the midpoint rule. A mixed finite element method
employing the displacement–pressure formulation has been
used for the mechanics of the soft, nearly incompressible
tumor. Of special relevance to this study has been the need
to rapidly test formulations with different forms of the PDEs,
response functions and constitutive models, and for a range
of initial and boundary conditions. For this purpose we have
adopted the multiphysics modeling code, Comsol8. A typical
computation with ∼5000 finite elements run for 20 days of
physical time took 2 h of wall time to run on an IBM Thinkpad
T43 laptop with 2 GB RAM and a processor speed of 2 GHz.

3. Experimental methods

Experimental work with cancer cells and the tumor spheroids
that they form will provide the values for the essential
parameters of our model. While data are available for certain
aspects of chosen cell lines and tumor spheroid systems, there
is a need for comprehensive data that are consistent in the
sense that they are obtained for the same cell line(s) and
tumor spheroid system(s). Preliminary experimental work
has included the optimization of tumor spheroid production,
the seeding of the resulting tumor cells in hydrogels and the
observation of the subsequent growth of the tumors over time

8 www.comsol.com.

periods up to one month. The tumor spheroids have been
grown in hydrogels of various concentrations and we have
probed the gels’ mechanical properties.

3.1. Cancer cell culture maintenance, tumor spheroid
production, and growth

For preliminary experiments, we have chosen to work with
three different adherent epithelial cancer cell lines: human
colon adenocarcinoma (LS174T), human cervix carcinoma
(HeLa) and human breast adenocarcinoma (MCF-7). Cell
subculturing, prior to tumor spheroid production, is carried out
in tissue culture flasks with a cell-attachment-treated surface
area of 75 cm2. The different culture conditions used for
each cell line are as follows. For LS174T cells: BioWhittaker
EMEM (Lonza) containing l-glutamine plus an additional 10%
fetal bovine serum (FBS), 1% NEAA, 1% penicillin and
1% streptomycin (1% P/S). For HeLa cells: GIBCO RPMI
1640 (Invitrogen) containing l-glutamine plus an additional
10% FBS and 1% P/S. For MCF-7 cells: GIBCO DMEM
(Invitrogen) containing 4.5 g l−1 glucose plus an additional
10% FBS and 1% P/S. Cells are detached from the tissue
culture flask surface prior to growing to confluence using
GIBCO trypsin EDTA (0.05%, Invitrogen) and either split
or transferred to an experimental platform. Cells being
maintained in culture conditions or during experiments are
stored in incubators with a controlled environment of 37 ◦C,
high humidity and 5% CO2.

In all experiments, tumor spheroid formation is initiated
using the hanging drop method. Cells are suspended in their
culture medium at a concentration of 5000 cells cm−3. Drops
of 6.5 μl, containing the cell suspension, are placed with a
pipette on the underside of the cover of a Petri dish and the
cover is then inverted and replaced on the dish. Gravity and
the surface tension of the liquid confine the approximately 10–
50 cells per drop to a small quasi-spherical volume where the
formation of cell-to-cell attachments is encouraged. The time
necessary for the formation of an agglomerate of cells, which
adhere to each other and produce their own ECM, within the
drops, is cell-line-dependent. For example, LS174T cells form
spheroids within approximately 12 h, whereas MCF-7 cells
require 2–3 days.

Spheroids are transferred into agarose hydrogels using
a gel overlay method. Agarose hydrogels, in varying
concentrations of agarose, provide different levels of
3D mechanical support for the tumor spheroids without
biochemical interactions between the tumor cells and their
environment. Whereas tumor–environment interactions are
important, in the initial stages of our study we seek to
restrict the energy flow to only mechanical interactions
with the environment and processes internal to the tumor
spheroid. By doing this, we can concentrate on identifying
the effects of nutrition (i.e. oxygen and glucose) and
stiffness of the environment without the confounding effects
of an additional set of ECM molecules. In later phases of
this research, adhesive and interactive 3D environments will
provide additional insights on the very important biochemo-
mechanical feedback that a tumor has with its surrounding

6

http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com


J. Phys.: Condens. Matter 22 (2010) 194122 H Narayanan et al

(a) (b)

(c) (d)

Figure 1. Time progression of the growth of an LS174T tumor embedded in a 0.5% agarose gel. Image (a) is a phase image of the spheroid
shortly after its transplantation into the gel followed by images taken at (b) 45, (c) 81 and (d) 140 h after transplantation. The scale bar is
50 μm.

ECM. For preparation of the hydrogels, the appropriate amount
of agarose powder is mixed with deionized water and heated in
a microwave oven to fully dissolve the powder and create a
stock solution of 2.0 wt% agarose hydrogel. When the agarose
stock solution has cooled to at least 37 ◦C it is mixed with cell
culture medium in order to obtain the desired final agarose
concentration. A thin layer (approximately 2 mm thick) of
ungelled agarose and cell culture medium solution is then
placed in the bottom of a cell culture well. Shortly before
the agarose forms into a gel, the spheroids are individually
transferred just under the surface of the gel using a 10 μl
pipette tip. To ensure complete coverage of the spheroid, an
additional layer of ungelled agarose solution is placed on top
of the first. The agarose is allowed to gel at room temperature
for 20 min, after which cell culture medium is added to each
well.

After the spheroids have been seeded in the gels, we have
either continuously monitored the development of single tumor
spheroids for time periods up to one week or, for more long-
term statistical data, acquired images of many tumor spheroids
(approximately 20 per experiment) at 48 h intervals for up to
one month. Continuous monitoring is performed on an inverted
microscope (Zeiss Axiovert 200) using phase contrast and DIC
techniques with images being captured every 15 min. An
incubator housing is placed over the stage of the microscope
to maintain a humid environment at 37 ◦C and 5% CO2.

Preliminary experiments have shown that the LS174T cell
line agglomerates readily and rapidly to form spheroids under

the growth conditions described above. In a typical, successful
experiment where the development of the tumor was monitored
continuously, an LS174T tumor grew from a radius of ∼50–
∼200 μm over 7 days, a quadrupling of the radius. Assuming
uniform cell concentration in the spheroid this corresponds
to an increase in the number of cells by a factor of 64 (26),
which corresponds to six doublings of the cell population
in 7 days or a doubling time tD ∼ 1.16 days. Figure 1
shows a sequence from one of our preliminary tumor spheroid
growth experiments. The growth conditions for oxygen and
glucose corresponded to initial and boundary values ρo =
7.336 × 10−3 mg cm−3 (equilibrated with a partial pressure
corresponding to 20% oxygen) and ρg = 0.99 mg cm−3. This
value of ρo is 5× the optimal value found by Casciari et al
(1992) and the value of ρg is optimal. For our preliminary
studies we have assumed that the doubling time is also optimal
with respect to oxygen. On this basis we have used an optimal
cell doubling time of topt

D = 1.16 days.

3.2. Hydrogel characterization

As previously mentioned, the medium with which we
embed agglomerates of cancer cells for the growth and
characterization of tumor spheroids is agarose hydrogel
(type VII, low gelling temperature, Sigma Chemical Co.,
St Louis, MO, USA), in concentrations of 0.5–2% (wt vol−1)
agarose. The mechanical properties of agarose hydrogels
are sensitive to supplier, type and preparation method

7
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Figure 2. Computation of a growing tumor spheroid encapsulated in a gel. The state shown corresponds to 20 days. This two-dimensional
model represents a slice through the tumor spheroid and a surrounding gel, and appears as the semicircle in the lower part of the figure. The
initial configuration of the tumor spheroid is the inner semicircle of 50 μm radius, whose boundary appears as a thin black curve. The ring of
initial thickness 150 μm bordering the tumor spheroid is the encapsulating gel against whose mechanical resistance the spheroid grows. The
initial extent of the gel is indicated by the outer black semicircle located at 200 μm. The surface plot on the semicircular slice represents cell
concentration in mg cm−3 (left-hand-side legend). The upper surface plot represents oxygen concentration by its colors (right-hand-side
legend) and glucose concentration by its height, both in mg cm−3. The arrows on the tumor spheroid are flux vectors of the motile cells. The
extent of the tumor spheroid is revealed by the high concentration of cells in its core. The cell concentration decreases sharply to zero in the
gel.

(Luo and Shoichet 2004, Stolz et al 2004). Additionally,
initial experiments show that the behavior of agarose is
rate-dependent, likely due to viscoelastic contributions of
the polymer and poroelastic effects of the hydrating fluid.
Characterization of the macroscopic mechanical behavior of
hydrated agarose gels is being carried out with unconfined
compression and stress relaxation tests using an MTS
NanoBionix Test System.

Unconfined compression and stress relaxation are per-
formed between aluminum platens: one platen is fitted with
a Plexiglas cylinder containing the agarose sample submerged
in a bath of hydrating fluid. A brief description of sample
preparation for mechanical testing of agarose gels is as
follows. After gelling is complete, cylinders are stamped out
of approximately 2 mm thick sheets using the large-diameter
end of a Pasteur pipette. The resulting nominal diameter of
the agarose cylinders is 5 mm. The top platen compresses
the gel with strain rates between 1 × 10−4 and 1 × 10−3 s−1

to maximum strains between 5 and 20% at which point the
crosshead displacement is halted and the stress is continually
measured for an additional 2 min before unloading at the same
rate.

From our preliminary mechanical characterization of the
gels we have obtained apparent moduli of the order of 1—
25 kPa with a recognizable strain rate effect (see table 2). We
also found relaxation times of ∼200 s in the stress relaxation
tests on gels. This corresponds to intrinsic rates of ∼0.005 s−1,
which are many orders of magnitude greater than the growth-
induced volume strain rate of ∼10−7 s−1. For this reason we
have neglected the viscous effect in gels for our computations

Table 2. Apparent modulus values (in kPa) for various agarose
concentrations and strain rates. Note the strain rate effect.

Agarose concentration

Strain rate
(s−1) 0.5% 0.75% 1.0% 2.0%

1 × 10−4 — 1.5 2.5 15
5 × 10−4 0.7 1.8 3.8 22
1 × 10−3 0.8 1.9 4.0 25

as indicated in section 2.2, and guided by our preliminary
experimental results presented in table 2, we have estimated
a value of 6 kPa for Young’s modulus of 2% agarose gels for
small strains. Since the gels have a high water content (98–
99.5%), they are found to be nearly incompressible, which we
have modeled by taking the Poisson ratio to be 0.49 in the small
strain regime. This gives a bulk modulus κ = 100 kPa and
shear modulus μ = 2013 Pa (see table 1).

4. Numerical estimates of free energy rates

Figure 2 introduces the reader to the main fields that are
solved for in the formulation of initial and boundary value
problems (IBVPs) of tumor physics. The computation is
of a growing tumor spheroid, shown here after 20 days of
growth, encapsulated by a gel. The parameters used in this
computation appear in table 1. The extent of the tumor
spheroid is revealed by the central, high concentration of
cells. The initial distribution of ρc is uniform at 510 mg cm−3

(equivalent to 170 cells in a volume 100 × 100 × 100 μm−3)
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over the tumor spheroid. The higher values of ρc after 20
days of growth imply a higher cell packing density by a
factor of ∼2.6, corresponding well with the observations of
Helmlinger et al (1997). Outside of this high concentration
lies the encapsulating gel where ρc decreases sharply close to
zero. This introductory computation shows that the spheroid
has grown to a radius of ∼120 μm (demarcated by the central
high values of ρc) over 20 days (1.728 × 106 s) starting from
a radius of 50 μm as the cells produce ECM and proliferate to
fill the newly laid down matrix9. As a result the gel has been
deformed. The cells also consume oxygen and glucose. The
initial distributions of oxygen and glucose were uniform over
the tumor spheroid and gel: ρo = 7.42×10−4 mg cm−3, which
is ∼10% of the value in our preliminary experiments. The
oxygen concentration in our experiments was equilibrated with
the partial pressure of 20% oxygen in gas, which corresponds
to the partial pressure of oxygen in the atmosphere. The
lower ρo was chosen for the computations because oxygen
concentrations in tissues are usually found to be at most 20% of
the value that equilibrates with the partial pressure of oxygen
in the atmosphere. The initial glucose concentration was
ρg = 0.99 mg cm−3, the same value as in our preliminary
experiments. These concentration values were maintained as
boundary conditions at the outer surface of the gel. Many
studies were carried out, of which we have presented only the
most relevant results here and in the parametric studies that
follow.

The computation proceeds with diffusion and consump-
tion of oxygen and glucose, cell proliferation and ECM
production, and the resultant growth of the spheroid. Oxygen
and glucose are depleted by the cells as shown by the upper
surface plot of ρo and ρg. By 20 days ρo and ρg remain high
only in an outer rim of cells, and decrease toward the center. As
discussed in section 1, the depletion of oxygen and glucose has
been found to influence the onset of necrosis in experiments
on tumor spheroids (Gatenby and Gillies 2004, Bell et al 2001,
Mueller and Klieser 2000, Freyer 1998, Groebbe and Mueller-
Klieser 1996, Casciari et al 1992, Freyer et al 1991, Tannock
and Kopelyan 1986, Mueller-Klieser et al 1986, Sutherland
et al 1986, Freyer and Sutherland 1986, Freyer and Sutherland
1985, Franko and Sutherland 1979, Warburg et al 1927). Later
in this paper we show a more pronounced depletion of oxygen
and glucose in a computation that models more aggressively
proliferating cells at a later time in the spheroid’s growth.

Figure 3 shows the sum of the rate quantities that make up
the left-hand side of the free energy inequality (15) for the case
modeled in figure 2. Recall that each term is the rate of change
of free energy density from a specific mechanism as discussed
in section 2.3. This sum of the rates is negative at all points
over the tumor spheroid and gel, indicating a decrease of free

9 In the computations the tumor spheroid has grown to a lesser extent than in
our exemplary preliminary experiment with LS174T cells. More experiments
are needed, however, to obtain statistical error bounds on growth rates. Also
note that the oxygen concentration in the computations was ∼10% of the
experiments, which leads to a lower growth rate according to equation (6).
A 2% agarose gel was modeled in the computations instead of the 0.5%
agarose gel in the tumor spheroid growth experiments. The stiffer gel in the
computations also produces a greater elastic constraint on growth of the tumor
spheroid.

Figure 3. The surface plot shows the distribution, over the tumor
spheroid and gel, of the rate of change of free energy density from all
terms in the free energy inequality (15). The units are W m−3. The
arrows show the flux of cell motion.

energy density in accordance with the free energy inequality.
Note the order of magnitude difference in the rate of change
of the free energy density between the tumor spheroid and gel.
This difference is related to the cell distribution, which is high
in the tumor spheroid but drops sharply to zero in the gel.
Consequently, all cellular physical processes are significant
only in the tumor spheroid, and comparatively negligible in
the gel10. Diffusive transport of oxygen and glucose, and
mechanical deformation, are the only physical processes of
significance in the gel. Due to the uniformity of ρo and ρg over
the gel, the mass-specific free energy densities of oxygen and
glucose are also uniform, and the change in free energy density
due to their diffusion can be neglected. Since ρc drops sharply
to a very low value in the gel, the growth rate is negligible
there, and the change in free energy density associated with
growth against stress is also negligible over the gel.

The surface plots in figures 4(a)–(f) are distributions of
each of the six rate terms that make up inequalities (15)
and (17). The signs of the terms are consistent with (15).
Figure 4(a) shows that the rate of change of chemical free
energy density in the cells, ρcψ̇c

chem, is negative everywhere
in the tumor spheroid, meaning that the chemical free energy
density of the cells is being continually depleted to fuel tumor
growth, cell motion and deformation of the tumor spheroid and
gel. Figures 4(b) and (c) show that the free energy density rates
due to cell proliferation, π cψc, and due to ECM production,
π eψe, respectively, are positive in the tumor spheroid since
energy is being stored in the newly formed cells and ECM,
and that these terms vanish in the gel where cell proliferation
and ECM production are absent. From figure 4(d) we see that
−σ :dgr is positive over the tumor spheroid as cell proliferation

10 Recall that the cells have no interactions with the agarose hydrogel, which
they would if a collagen gel or matrigel were used instead.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Surface plot of the free energy rate terms in (15). All units are W m−3. (a) The rate of change of chemical free energy density stored
in the cells, ρcψ̇ c

chem. (b) The rate of change of free energy density stored in newly formed cells, π cψ c. (c) The rate of change of free energy
density stored in newly produced ECM, π eψ e. (d) The rate at which free energy density is dissipated into work done as the tumor spheroid
grows against stress, −σ :dgr. (e) The rate at which free energy density is dissipated due to cell motion, ρc∇ψ c·vc. (f) The rate of change of
free energy density due to glucose consumption, πgψ g.

and ECM production ensure a positive growth rate (increase in
mass with associated swelling) while the stress is compressive
(trace of the stress tensor is negative) due to the mechanical
constraint of the gel. Therefore, the associated change in
free energy density is stored, not dissipated, as it would be
if −σ :dgr were negative (equivalently, if σ :dgr were positive
as discussed in section 2.3). This rate vanishes over the gel
due to the absence of growth there. The rate of change of
free energy density due to cell motion, given by ρc∇ψc · vc

in (15), however, is positive, and therefore dissipative as shown
in figure 4(e). Its contribution to the rate of change of free
energy density is close to zero everywhere except for a rim of
motile cells at the tumor–gel interface, where it is negative as
the cells move downhill over their own free energy landscape.

Figure 4(f) shows the rate of change of free energy density due
to glucose consumption, πgψg. The negative values over the
tumor spheroid indicate that glucose is being consumed, but
the rate decreases sharply to zero over the gel where glucose
undergoes diffusion but no consumption.

It is also instructive to compare the magnitudes of the
various free energy storing and dissipating mechanisms that
have been illustrated in figure 4. Particularly noteworthy is
that the rate of change of the chemical free energy of cells
(ρcψ̇c

chem), rate of free energy storage in newly formed cells
and ECM (π cψc and π eψe, respectively), and the rate at which
free energy is drawn from glucose (πgψg) are the same order
of magnitude and comparable to each other. This suggests
that the (mainly) biochemical processes associated with the
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cancer’s dynamics are relatively close to being balanced as
they interconvert free energy. We recall the basis on which
these terms were modeled: the chemical free energy rate in
the cells, ψ̇c

chem, was adopted from the value noted for the
metabolic power output of mammalian cells in culture by West
et al (2002) and the power drawn from glucose consumption;
see equation (16). Our models for the source terms π c and
πg were abstracted from the work of Casciari et al (1992)
on EMT6/Ro mouse mammary tumor cells, as discussed in
section 2.1, where we also explained our model for π e. The
elastic moduli, κ and μ, that parameterize the Mooney–Rivlin
strain energy density function, W , for the tumor spheroid were
based on estimates for moduli of cells in Suresh (2007) that
were extended by assuming elastic incompressibility of the
tumor spheroid. The same were assumed for the gel, and were
in good correspondence with our initial measurements of the
mechanical properties of gels (see section 3.2 and table 1). The
total free energy density of cells was written as

ρcψc = ρcψc
chem + ρc

ρc + ρe
W, (18)

with West et al’s (2001) estimate of the chemical energy
content of a single mammalian cell being used to specifyψc

chem.
For the ECM, however only the strain energy density was
included:

ρeψe = ρe

ρc + ρe
W. (19)

The well-known free energy of glucose metabolism was
used to specify ψg (table 1).

Also of note is that the rate of free energy density
storage due to growth against stress −σ :dgr is three orders
of magnitude smaller than the terms ρcψ̇c

chem, π cψc, π eψe

and πgψg, all of which involve some biochemical processes.
This suggests that the mechanical processes that take place
in growing tumors are highly energy efficient compared with
the biochemical ones. The free energy dissipated during cell
motion, ρc∇ψc·vc, is even smaller because the cell diffusivity,
Dc = 10−16 m2 s−1, which has been assumed for these cells
results in very slow cell motion. Over a day the random
motion of motile cells will cause them to displace an average
of 7.2 μm11.

4.1. Parametric studies

We next considered parametric variations to model biophysi-
cally relevant perturbations to the tumor spheroid–gel system.
Plots of these results have not been shown here for the lack
of space, but the essential findings are discussed. The first
of these parametric variations is a fivefold increase in cell
doubling time, tD to model the effect of a gene knockout that
transforms the cells into a very slowly proliferating phenotype.
For this equation (6) was simply modified by a constant
multiplicative factor. The cancer cells proliferate much more
slowly to the extent that, at 20 days, ρc is approximately half
of that in figure 2. Less ECM is also produced. The more

11 At this low value the cell diffusion term in equation (1) could be neglected.
Instead we have relied on the computations to attain the limits of low and high
motility cells.

sparsely cellular tumor spheroid consumes correspondingly
less glucose.

For this model of a tumor with less proliferative cells we
have re-computed the different contributions to the free energy
inequality. The rate of change of chemical free energy density
in the cells, ρcψ̇c

chem, is scaled down by a factor of 3, while the
rate of change of free energy density due to ECM production,
π eψe, and the rate of consumption of the free energy density in
glucose, πgψg, are scaled down by a factor of approximately
2, influenced mainly by the decreased cell concentration. The
decrease in growth rate also causes less free energy storage
by the stress power mechanism, −σ :dgr, attenuating it by a
factor of approximately 3. The most strongly affected terms,
however, are the rate of storing free energy in newly formed
cells, π cψc, and the dissipation of free energy by cell motion,
ρc∇ψc·vc. The increased cell doubling time translates to an
exponential decrease in π c (see equation (5)), which with the
coupling of ρc and ρg via the cell proliferation and glucose
consumption terms, π c and πg, respectively (equations (5), (6)
and (9)), causes an order of magnitude decrease in π cψc and a
20-fold decrease in ρc∇ψc·vc. Notably, the dramatic decrease
in free energy dissipated due to cell motion comes about even
as the cell flux, ρcvc, itself remains unchanged.

Similarly, we have modeled an increase in motility
of the tumor cells by increasing the cell diffusivity
to Dc = 10−13 m2 s−1. The corresponding cell,
oxygen and glucose concentrations (ρc, ρo, ρg) are shown
in supporting information as figures S1–S3 (available at
stacks.iop.org/JPhysCM/22/194122/mmedia). No significant
variations are observed in any of the free energy density rate
terms except for the dissipation due to cell motion, which
increases by three orders of magnitude in direct relation to the
magnification of the cell flux, ρcvc = −Dc∇ρc. The larger
diffusivity Dc = 10−13 m2 s−1 means that the cells displace
by ∼225 μm over a day in comparison with a displacement
of ∼7.2 μm for Dc = 10−16 m2 s−1. This model of higher
motility cells is in good quantitative agreement with reports
in the experimental literature of highly metastatic glioma cells
(Deisboeck et al 2001, Hegedus et al 2004). The corresponding
diffusivity, Dc = 10−13 m2 s−1, was also used for gliomas
by Khain and Sander (2006). However, even this greatly
magnified dissipation due to enhanced cell motility remains
two orders of magnitude lower than the rates of free energy
change governed by the dominant biochemical mechanisms
discussed above. An increase in gel stiffness by an order of
magnitude affected only the rate of free energy storage due
to growth against a stress, −σ :dgr, magnifying it by a factor
of nearly 3 while the other rate terms showed no significant
variations.

5. Discussion

5.1. Rationale for computational study of free energy changes
in growing tumor spheroids

Firstly, we reiterate our statement that free energy change
at the tumor scale is a universal measure for quantification
of the physical processes that govern cancer’s progression.
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This has been the motivation for our continuum-theory-based
mathematical formulation of tumor physics and its extension
to obtain a precise statement of the relation between the free
energy rates of the various mechanisms at the tumor scale.
The free energy inequality (15) is this statement, and it is
important to note here that it is a local statement, holding for
each point of the tumor spheroid. We note also that it is of
interest to have spatially varying field values of the terms in the
free energy inequality. It allows us to study the effect of non-
uniform concentrations (of cells, ECM, oxygen and glucose),
stress and boundary conditions on the biochemical dynamics
and mechanics of the tumor. For instance, it would allow
the study of how non-uniform tumor growth and cell motion
are induced over the tumor spheroid by these conditions. In
addition to the spatial variation in the field values, tumor scale
studies would also allow us to investigate how free energy rates
change during tumor spheroid development, thereby providing
a model for energy usage at different stages of a cancer.

If we were to rely solely on experimental studies to
examine these free energy rates for a tumor spheroid system,
we would need to obtain spatially varying values for each
of the fields in inequalities (15) and (17). Experimentally,
it is possible to obtain spatially varying field values for the
concentrations, ρc, ρe, ρo and ρg, and from the changes in
ρc and ρe, the rate of deformation tensor due to growth,
i.e. dgr can be computed. However, the mass-specific free
energies, ψc

chem, ψ
c and ψe, must be computed on the basis

of constitutive models and the stress, σ , from the viscoelastic
and active stress models for mechanical response. These
can be computed very efficiently within the computational
model. We note also that the experiments will allow only
a limited spatial resolution, i.e. the values can be measured
only at a limited number of points. However, with the
mathematical model the spatial resolution is limited only
by the computational power available, and that provides a
resolution that is several orders of magnitude greater than
from experiments12. Additionally, a mathematical model is
necessary for a system-wide understanding of how different
(biochemical and mechanical) effects interact and lead to
emergent properties. It is for these reasons that we have
pursued a computational evaluation of the terms in the free
energy inequality. For this specific study of tumor-scale free
energy rates, experiments play the critical role of providing
parameters that are as precise as possible within the limits of
the techniques.

5.2. The roles of tumor scale and hierarchical studies

The studies of free energy rates associated with the
biochemical and mechanical processes at the tumor scale can
be complemented by investigations of the same processes at
the cell–ECM and sub-cellular scales. We note that many
experimental techniques have been developed for this purpose,
while models of cell mechanics and sub-cellular processes are
also common. Such studies at a hierarchy of scales would show

12 We note, of course, that it is meaningless to numerically resolve ρc finer
than the scale of a single cell (∼10 μm), while ρe, ρo and ρg may well be
resolved below this scale.

how the free energy rates of these processes change between
the sub-cellular, cell–ECM and tumor scales. This could
suggest, for example, whether the agglomeration of single cells
into solid tumors causes significant changes in free energy rates
associated with cell proliferation or cell motility. Thereby the
impact of collective behavior on the development of cancers
that form solid tumors can be studied. New insights can thus
be gained into the development of the cancer by exploiting the
universality of free energy rates as a measure for comparison.

5.3. Free energy estimates

The preliminary computations that we have presented here
show that the rate of change of the chemical free energy density
of cells (ρcψ̇c

chem), rate of free energy density storage in newly
formed cells and ECM (π cψc and π eψe, respectively) and the
rate at which free energy density is drawn from glucose (πgψg)
are the same order of magnitude, and comparable to each other.
This suggests that the rates of free energy interconversion
are relatively close to being balanced between the (mainly)
biochemical processes associated with the cancer’s dynamics.
The total rate of change of free energy density is negative
as required by (15) and also of the same magnitude as the
above terms. The numerical value of this total rate is this
preliminary study’s estimate of the imbalance in free energy
conversions that is being lost in accordance with the second
law of thermodynamics. That this loss is comparable to the
free energy converted by any of the four dominant tumor-
scale mechanisms listed above suggests that these biochemical
processes that dominate cancer’s dynamics are inefficient.

5.3.1. Relative free energy density rates of biochemical and
mechanical deformation processes. Before considering this
interpretation of free energy rates in terms of efficiency it
is useful to recall the sources for the parameters that play
important roles in this estimate, and reflect on the origins
of uncertainty or errors therein. The consumption rates of
oxygen, πo, and glucose, πg, are based on models fitted
to data for EMT6/Ro cancer cells (Casciari et al 1992), the
optimal cell doubling time, topt

D , was matched to our own
preliminary tumor growth experiments with LS174T human
colon adenocarcinoma cells, and the rate of change of chemical
free energy in cells, ψ̇c

chem, was the sum of the estimate
for metabolic power output by normal mammalian cells in
culture from West et al (2002) and the energy drawn from
glucose consumption. While we have not yet found specific
quantitative data for ψ̇c

chem for cancer cell lines, it is quite
possible that it may be significantly different from normal
cells. Apart from this, the free energy rate terms in (15) must
be consistently measured on the same cancer cell line(s) to
rigorously validate these findings regarding the mechanisms
that dominate the free energy inequality. We emphasize the
preliminary, exploratory nature of this finding. In general,
more comprehensive experiments are needed from which
consistent data can be obtained for a single system of cancer
cells. One purpose of our paper is to motivate a comprehensive
experimental study of this nature that is forthcoming.

The inefficiency of the biochemical processes suggests
that cancer cells do not experience the evolutionary pressure
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to be energy efficient at the early, pre-vascular stage of the
tumor that is represented by tumor spheroids. That the
dissipation of a large amount of free energy (inefficiency) is
detrimental for survival of cells is reflected in the development
of a necrotic core in the tumor spheroid. However, rather
than herald a suppression of tumor development, the necrosis
only causes termination of the exponential growth phase, as
has been well documented (see the literature cited in this
regard in section 1.2). In vivo, the tumor continues to
develop via angiogenesis—an adaptation that may be viewed
as ‘subsidizing’ the inefficiency of its biochemical processes
in the pre-vascular stage.

We have already discussed the origins of the quantities that
parameterize the mechanical response of the tumor spheroid,
the rates of cell proliferation, oxygen and glucose consumption
and cell motion. Additionally, the estimates for moduli of soft
matter, including cells, and hydrogels are widely reported (see
Suresh 2007 and references therein; Helmlinger et al 1997).
Given the growth rate of tumor spheroids, also widely reported
in the many papers that we have cited, there is a good degree of
confidence in the tumor growth rates, dgr, and using the moduli,
therefore, in the stress, σ . On this basis, the estimates for rate
of free energy storage due to growth against stress are accurate
at least up to the order of magnitude. We therefore expect
that our conclusion is valid on the relative insignificance of the
rate at which free energy is stored by this mechanism. Even
in vivo the stress created in a growing solid tumor confined
by surrounding tissue is unlikely to exceed the stress in our
computations by more than an order of magnitude, and we
expect that the rate of free energy storage by this mechanism is
low in vivo also. The small free energy density rate associated
with this contribution in comparison with the biochemical
processes suggests that there is little prospect of achieving
tumor growth control by energy starvation through mechanical
interventions. However, such control may be achieved via
biochemo-mechanical signaling, as suggested by the work of
Helmlinger et al (1997) and Chang et al (2008). We draw
attention to the fact that the tumor growth model does not
incorporate the stress-induced suppression of growth that has
been observed in these two papers. Inclusion of this effect
would only further lower the rate of free energy storage due
to growth against stress in the computations.

5.3.2. Free energy changes associated with cell motion. The
rate of dissipation of free energy due to cell motion, ρc∇ψc ·vc,
is the scalar product of the cell flux, ρcvc, and the gradient
of the mass-specific free energy of cells, ∇ψc. Of these
the magnitude of the cell flux is determined largely by the
diffusivity, Dc, which we have varied to model nearly immotile
to higher motility cells. The mass-specific free energy of cells
is ψc = ψc

chem + W/(ρc + ρe), of which we have estimated
ψc

chem from West et al’s (2001) calculation of the energy
required to form a mammalian cell, ψc

form, and the additional
energy gained from glucose consumption:

ψc
chem = ψc

form + 1

ρc

∫ t

0
ψg(ρg(s)− ρ

g
0 ) ds, (20)

where the integral is from the initial time to the current time
and ρg

0 is the initial glucose concentration. The values of ψc
chem

therefore have some dependence on the solution of the IBVP,
and there is a degree of uncertainty arising from the choice of
initial and boundary conditions. For this reason there is a little
less confidence in our results, pointing to the insignificance
of the dissipation due to random cell motion. Furthermore,
chemotactic and haptotactic cell motion, which are important
for eventual metastasis, have not been included in this study.
The inclusion of these effects in studies of later (vascularized)
stages of tumor development could qualitatively change this
estimate.

We note also that the physics of single-cell motion is
complex. It involves remodeling of the actin cytoskeleton
by polymerization and depolymerization, deformation of the
cell membrane during filopodial motion, retraction of the cell
membrane at the trailing edge due to actomyosin contractility,
cell attachment and detachment regulated by focal adhesion
dynamics, and mechanical interactions of the cell with the
ECM. Free energy changes are involved in all of these
phenomena. Some of these are mechanisms of free energy
storage in newly formed actin stress fibers, focal adhesions
and their elastically deforming parts, while free energy is
dissipated due to reaction, diffusion and viscous processes.
However, none of these effects are represented in our model
at the tumor scale where cells are treated as a concentration
field. The physics of single-cell motion outlined above would
emerge in models at the sub-cellular and cell–ECM scales. The
dissipation represented in the term ρc∇ψc·vc only corresponds
to the rate of free energy loss as cells migrate to positions in
the medium where they possess lower free energy. We will
obtain a more complete estimate of the rate of change of free
energy density due to cell motion by carrying out studies at
a hierarchy of scales: sub-cellular, cell–ECM and the tumor
scale. It could reveal whether the mechanisms that govern this
process at these different scales introduce notable quantitative
and qualitative differences between the rate of change of
free energy due to cell motion at the different scales. The
present paper only serves to begin this study. Investigations
of the free energy resources consumed by cell motion over this
hierarchy of scales when carried out for different cell lines and
biochemical/mechanical interventions will ultimately lead to a
better understanding of the metastatic potential of cancers.

We note also that more strongly adherent cells would have
a higher energy of binding with each other and with the ECM.
While the free energy changes associated with formation and
breakage of adhesions have not been included, we note that
higher adhesion energies would manifest themselves in lower
cell diffusivity—an effect that we have considered. Also of
note in this regard is the work of Turner (2005) where a
continuum model was obtained for cell motion by accounting
for the energy of cell–cell and cell–ECM adhesion. A multi-
scale technique was developed, in which the continuum limit
of adhesive interactions between discrete cells and the ECM
led to a fourth-order nonlinear PDE for transport that bears
a relation to the Cahn–Hilliard equation. Khain and Sander
(2008) also made direct use of the Cahn–Hilliard equation to
model adhesive effects in cell transport. As explained above,
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Figure 5. The dynamical state of the tumor spheroid at 28.3 days with more proliferative cells. The cell doubling time is half the value of the
case modeled in figure 2. Note the significantly greater depletion of glucose and oxygen in the tumor spheroid’s core. This two-dimensional
model represents a slice through the tumor spheroid and a surrounding gel, and appears as the semicircle in the lower part of the figure. The
initial configuration of the tumor spheroid is the inner semicircle of 50 μm radius, whose boundary appears as a thin black curve. The ring of
initial thickness 150 μm bordering the tumor spheroid is the encapsulating gel against whose mechanical resistance the spheroid grows. The
initial extent of the gel is indicated by the outer black semicircle located at 200 μm. The surface plot on the semicircular slice represents cell
concentration in mg cm−3 (left-hand-side legend). The upper surface plot represents oxygen concentration by its colors (right-hand-side
legend), and glucose concentration by its height, both in mg cm−3. The arrows on the tumor spheroid are flux vectors of the motile cells. The
extent of the tumor spheroid is revealed by the high concentration of cells in its core. The cell concentration decreases sharply to zero in the
gel.

we foresee incorporating the influence of adhesion and other
lower scale effects by carrying out studies at a hierarchy of
scales to investigate the free energy usage of tumors.

5.3.3. The role of parametric studies. The parametric studies
that we have carried out by varying the cell doubling time,
cell diffusivity and gel stiffness also are of an exploratory
nature. Variations in the cell doubling time bring about
dramatic changes in the free energy stored in newly formed
cells, π cψc, and the free energy dissipated due to cell
motion, ρc∇ψc·vc, suggesting that further studies are needed
to validate, and if confirmed, to explain the strength of this
coupling of biophysical effects. These studies could include
both computations such as here but with more comprehensive
and consistent data, as well as investigations at the cell–matrix
and sub-cellular scales.

Among other avenues for exploration are the parame-
terization of cell proliferation, metabolic and oxygen/glucose
consumption rates for different gel stiffnesses and cell–
ECM adhesiveness. The empirical determination of these
rates and their use in the free energy computations that
we have demonstrated here will reveal whether and how
the mechanisms of free energy change are altered by these
different conditions. This may also point to further studies that
will have to include the cell–cell, cell–ECM and sub-cellular
scales.

5.4. Onset of necrosis

The model can also be used to study the onset of necrosis.
Figure 5 shows the distributions of ρc, ρo and ρg for a more

proliferative phenotype, which was modeled by an optimal
doubling time topt

D that is half of the value of the baseline case
in figures 2–4. Note the pronounced depletion of oxygen and
glucose, which has been studied in a number of experiments
(cited in section 1.2) for its role in the onset of necrotic cores in
tumor spheroids. However, we have not been able to identify
a sufficiently precise criterion for the onset of necrosis from
these experiments. For this reason we have not attempted to
model the formation of a necrotic core in our computations and
have concentrated on free energy changes in the pre-necrotic
stage. Note that the higher consumption of oxygen and glucose
by the more aggressively proliferating cells has also resulted
in a noticeable radial gradient of cell concentration: the core
being depleted of oxygen and glucose has proliferated slower.
This inhomogeneity is made possible by the cell proliferation
rate modeled by equations (5) and (6) with their pointwise
dependence on ρo and ρg. These equations were obtained by
applying the results of experiments on entire tumor spheroids
held at fixed ρo and ρg (Casciari et al 1992) to each point in
the computational domain. When these equations are solved
in our computations, even though each point of the tumor
follows an exponential growth law, the distribution of cell
proliferation rate is inhomogeneous due to spatial variations
in ρo and ρg (figure S4 in supporting information (available
at stacks.iop.org/JPhysCM/22/194122/mmedia)). While still
proliferating with an exponential law, the core is close to the
onset of necrosis due to the depletion of oxygen and glucose.
In future studies we will consider the free energy rates during
development of the necrotic core in tumor spheroids—a state
which is observed during the development of true solid tumors,
also.
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Drasdo D and Höhme S 2005 A single-cell-based model of tumor
growth in vitro: monolayers and spheroids Phys. Biol. 2 133–47

Folkman J and Greenspan H P 1975 Influence of geometry on control
of cell growth Biochim. Biophys. Acta 417 211–36

Franko A J and Sutherland R M 1979 Oxygen diffusion distance and
development of necrosis in multicell tumor spheroids Radiat.
Res. 79 439–53

Freyer J P 1998 Decreased mitochondrial function in quiescent cells
isolated from multicellular tumor spheroids J. Cell. Physiol.
176 138–49

Freyer J P, Schor P L, Jarrett K A, Neeman M and Sillerud L O 1991
Cellular energetics measured by phosphorus nuclear magnetic
resonance spectroscopy are not correlated with chronic nutrient
deficiency in multicellular tumor spheroids Cancer Res. 51
3831–7

Freyer J P and Sutherland R M 1985 A reduction in the rates of in
situ oxygen and glucose consumption EMT6/Ro spheroids
during growth J. Cell. Physiol. 124 516–24

Freyer J P and Sutherland R M 1986 Regulation of growth saturation
and development of necrosis in EMT6/Ro multicellular
spheroids by the glucose and oxygen supply Cancer Res. 46
3504–12

Frieboes H B, Zheng X, Sun C-H, Tromberg B, Gatenby R and
Cristini V 2006 An integrated computational/experimental
model of tumor invasion Cancer Res. 66 1597–604

Garikipati K, Arruda E M, Grosh K, Narayanan H and Calve S 2004
A continuum treatment of growth in biological tissue: the
coupling of mass transport and mechanics J. Mech. Phys. Solids
52 1595–625

Garikipati K, Olberding J E, Narayanan H, Arruda E M, Grosh K and
Calve S 2006 Biological remodelling: stationary energy,
configuration change, internal variables and dissipation J. Mech.
Phys. Solids 54 1493–515

Garrett R and Grisham C M 2005 Biochemistry (Belmont, CA:
Thompson Brooks/Cole) p 584

Gatenby R A and Gillies R J 2004 Why do cancers have high aerobic
glycolysis Nat. Rev. Cancer 4 891–9

Geiger B and Bershadsky A 2001 Assembly and emchanosensory
function of focal contacts Curr. Opin. Cell Biol. 13 584–92

Gompertz B 1825 On the nature of the function expressive of the law
of human mortality, and on a new mode of determining the
value of life contingencies Phil. Trans. R. Soc. 115 513–83

Gordon V D, Valentine M T, Gardel M L, Andor-Ardó D,
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